
COP 3223: C Programming (Control Structures Revisited) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Control Structures - Revisited

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Control Structures Revisited) Page 2 © Dr. Mark J. Llewellyn

An Easy To Make Error With A For Statement

• What is the output from the following program, assuming the user

enters the value 15?

COP 3223: C Programming (Control Structures Revisited) Page 3 © Dr. Mark J. Llewellyn

An Easy To Make Error With A For Statement

The problem is this

semicolon which
effectively ends the for

statement. Thus, the body
of the for loop contains

no statements. The for

loop executes properly
and the value of i after

the loop terminates is 16.

COP 3223: C Programming (Control Structures Revisited) Page 4 © Dr. Mark J. Llewellyn

An Easy Error To Make With Conditional Expressions

• There is one type of error that many beginning C programmers

make, including some experienced C programmers, when dealing

with conditional expressions.

• This error is confusing the equality operator (==) with the

assignment operator (=). Often this mistake is made as simply a

typing error, but has potentially disastrous effects on your

program, because it will ordinarily not generate a syntax error.

• To illustrate this problem, consider the case where we have a set

of employees and their paycodes, where if the employee’s

paycode is set to 5, we will print a message that they have been

awarded a bonus.

• Consider the two cases shown on the next page:

COP 3223: C Programming (Control Structures Revisited) Page 5 © Dr. Mark J. Llewellyn

An Easy Error To Make With Conditional Expressions

• If we intended to type the version shown in (a), but mistakenly

typed the version in (b), what will happen?

• Version (b) will evaluate the assignment expression , which

simply assigns the constant value 4 to the variable payCode.

Since C interprets any nonzero value as “true”, the condition of

this if statement is always true and the person (indeed every

person) will be awarded the bonus!

if (payCode == 4) {

printf(“You’ll get a bonus!\n”);

}

if (payCode = 4) {

printf(“You’ll get a bonus!\n”);

}

(a)

(b)

COP 3223: C Programming (Control Structures Revisited) Page 6 © Dr. Mark J. Llewellyn

An Easy Error To Make With Conditional Expressions

GOOD PROGRAMMING PRACTICE

To avoid the type of error resulting from confusing the == operator with the =

operator, many C programmers will write an equality expression that contains

a variable and a constant, such as x == 4, with the constant on the left side

and the variable on the right side of the equality operator as in: 4 == x. This

will prevent the logic error that we saw on the previous page from happening

when you accidently replace == with =.

The reason that this will be caught as a syntax error and the other way

around will not is because only a variable can be placed on the left hand side

of an assignment expression. Variable names are said to be lvalues (for “left

values”) because they can be used on the left side of an assignment operator.

Constants are said to be rvalues (for “right values” because they can be used

only on the right side of an assignment operator. Note that lvalues can also

be used as rvalues (i.e., variables can appear on either the left or right side of

the assignment operator), but rvalues cannot be used as lvalues.

COP 3223: C Programming (Control Structures Revisited) Page 7 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• We’ve seen the three repetition structures in the C language:

while statement, do…while statement, and the for

statement.

• By now you should be fairly familiar with how each of these

statements work. You should also be aware of how the loops

are similar in that a for statement can basically be replaced

by a while statement with no loss of functionality.

• As we’ve seen, the while statement and do…while

statements are more commonly used when the number of

repetitions to be made is not known in advance and the for

statement is more suitable for when the number of

repetitions is known in advance.

COP 3223: C Programming (Control Structures Revisited) Page 8 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• To further illustrate the selection choice for a repetition

statement; consider the following two problems:

• Problem 1: We want the user to enter a set of 10 integer

values and our program will compute the sum, product, and

average of the ten numbers the user enters.

• Problem 2: We want the user to enter an unknown number

of integer values and our program will compute the sum,

product, and average of all the numbers entered by the user.

• Considering problem 1 first, we can clearly use any of the

repetition statements to help solve this problem. The next

three pages show example solutions using all three of these

statements; first a for statement, and second a while

statement, and finally a do…while statement.

COP 3223: C Programming (Control Structures Revisited) Page 9 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 10 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 11 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 12 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• Now considering problem 2, how do we solve it using these

repetition statements (since that’s all we have in C) when we

do not know in advance how many values the user has to

enter.

• Solution 1: Ask the user first to tell your program how many

integers they will enter. In this case replace the constant

LIMIT and make it an integer variable and read this value

first.

• Solution 2: Set aside a special value, called a sentinel, that

the user will enter to indicate that they have entered all of the

values that they intend to enter.

• A sample program using solution 1 is shown on page 13 and

a sample program using solution 2 is shown on page 14.

COP 3223: C Programming (Control Structures Revisited) Page 13 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 16 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• Notice that the sentinel controlled while statement will

function properly when the user decides not to enter any

numbers at all (i.e., their first value input is -999).

• Will the program on the following page also produce correct

results if the user’s first input value is -999?

COP 3223: C Programming (Control Structures Revisited) Page 17 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• Can you think of a way to use the do…while structure from

the previous page and still get it to work properly when the

user decides not to enter any numbers at all?

COP 3223: C Programming (Control Structures Revisited) Page 18 © Dr. Mark J. Llewellyn

How about using the
break statement to exit

the loop if the first value

was -999?

Will this work?

COP 3223: C Programming (Control Structures Revisited) Page 19 © Dr. Mark J. Llewellyn

Counter vs. Sentinel Controlled Repetition

• Yes! Remember that a break statement when executed

inside a while, for, do…while, or switch

statement, causes an immediate exit from that statement.

COP 3223: C Programming (Control Structures Revisited) Page 20 © Dr. Mark J. Llewellyn

This also works!

COP 3223: C Programming (Control Structures Revisited) Page 21 © Dr. Mark J. Llewellyn

The continue Statement

• There is also another statement in C called the continue

statement that will work in this case.

• The continue statement, when executed in a while,

for or do…while statement, skips the remaining

statements in the body of that control statement and

performs the next iteration of the loop.

– In while and do…while statements, the loop-

continuation conditional expression is evaluated

immediately after the continue statement is executed.

– In a for statement, the increment expression is executed,

then the loop continuation conditional expression is

evaluated.

COP 3223: C Programming (Control Structures Revisited) Page 22 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures Revisited) Page 23 © Dr. Mark J. Llewellyn

Practice Problems
1. Find the error in each of the following code segments and

explain how to correct it.

int x = 1;

while (x <= 10); {

printf(“x is: %d\n”, x);

x++;

}

(a)

//This code should print the

//values 1 to 10.int x = 1;

int n = 1;

while (n < 10){

printf(“%d\n”, x++);

}

(b)

int n;

switch (n) {

case 1: printf(“Number is 1\n”);

case 2: printf(“Number is 2\n”);

break;

case 3: printf(“Number is 3\n”);

default:

printf(“Number is not 1..3\n”);

break;

}

(c)

COP 3223: C Programming (Control Structures Revisited) Page 24 © Dr. Mark J. Llewellyn

Practice Problems
2. Construct a C program that uses for loops to produce the

following sequences of values:

1, 3, 5, 7, 9, 11, 13, 15

3, 8, 13, 18, 23, 28, 33

20, 14, 8, 2, -4, -10, -16

19, 27, 35, 43, 51, 59, 67

COP 3223: C Programming (Control Structures Revisited) Page 25 © Dr. Mark J. Llewellyn

Practice Problems
3. What does the following program do?

COP 3223: C Programming (Control Structures Revisited) Page 26 © Dr. Mark J. Llewellyn

Practice Problems
4. Construct a C program that produces the following output.

COP 3223: C Programming (Control Structures Revisited) Page 27 © Dr. Mark J. Llewellyn

Practice Problems
5. Construct a C program that produces the following output.

COP 3223: C Programming (Control Structures Revisited) Page 28 © Dr. Mark J. Llewellyn

Practice Problems
6. Construct a C program that produces the following output.

COP 3223: C Programming (Control Structures Revisited) Page 29 © Dr. Mark J. Llewellyn

Practice Problems
7. Construct a C program that produces the following output.

